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Parametric uncertainties in BSM searches
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Table 1: SM Higgs partial widths and their relative parametric (PU) and theoretical (THU) uncertainties for a
selection of Higgs masses. For PU, all the single contributions are shown. For these four columns, the upper
percentage value (with its sign) refers to the positive variation of the parameter, while the lower one refers to the
negative variation of the parameter.

Channel MH [GeV] Γ [MeV] ∆αs ∆mb ∆mc ∆mt THU
122 2.30 −2.3%

+2.3%
+3.2%
−3.2%

+0.0%
−0.0%

+0.0%
−0.0%

+2.0%
−2.0%

H → bb 126 2.36 −2.3%
+2.3%

+3.3%
−3.2%

+0.0%
−0.0%

+0.0%
−0.0%

+2.0%
−2.0%

130 2.42 −2.4%
+2.3%

+3.2%
−3.2%

+0.0%
−0.0%

+0.0%
−0.0%

+2.0%
−2.0%

122 2.51·10−1 +0.0%
+0.0%

+0.0%
−0.0%

+0.0%
−0.0%

+0.0%
−0.1%

+2.0%
−2.0%

H → τ+τ− 126 2.59·10−1 +0.0%
+0.0%

+0.0%
−0.0%

+0.0%
−0.0%

+0.1%
−0.1%

+2.0%
−2.0%

130 2.67·10−1 +0.0%
+0.0%

+0.0%
−0.0%

+0.0%
−0.0%

+0.1%
−0.1%

+2.0%
−2.0%

122 8.71·10−4 +0.0%
+0.0%

+0.0%
−0.0%

+0.0%
−0.0%

+0.1%
−0.1%

+2.0%
−2.0%

H → µ+µ− 126 8.99·10−4 +0.0%
+0.0%

+0.0%
−0.0%

−0.1%
−0.0%

+0.0%
−0.1%

+2.0%
−2.0%

130 9.27·10−4 +0.1%
+0.0%

+0.0%
−0.0%

+0.0%
−0.0%

+0.1%
−0.0%

+2.0%
−2.0%

122 1.16·10−1 −7.1%
+7.0%

−0.1%
−0.1%

+6.2%
−6.0%

+0.0%
−0.1%

+2.0%
−2.0%

H → cc 126 1.19·10−1 −7.1%
+7.0%

−0.1%
−0.1%

+6.2%
−6.1%

+0.0%
−0.1%

+2.0%
−2.0%

130 1.22·10−1 −7.1%
+7.0%

−0.1%
−0.1%

+6.3%
−6.0%

+0.1%
−0.1%

+2.0%
−2.0%

122 3.25·10−1 +4.2%
−4.1%

−0.1%
−0.1%

+0.0%
−0.0%

−0.2%
+0.2%

+3.0%
−3.0%

H → gg 126 3.57·10−1 +4.2%
−4.1%

−0.1%
−0.1%

+0.0%
−0.0%

−0.2%
+0.2%

+3.0%
−3.0%

130 3.91·10−1 +4.2%
−4.1%

−0.1%
−0.2%

+0.0%
−0.0%

−0.2%
+0.2%

+3.0%
−3.0%

122 8.37·10−3 +0.0%
−0.0%

+0.0%
−0.0%

+0.0%
−0.0%

+0.0%
−0.0%

+1.0%
−1.0%

H → γγ 126 9.59·10−3 +0.0%
−0.0%

+0.0%
−0.0%

+0.0%
−0.0%

+0.0%
−0.0%

+1.0%
−1.0%

130 1.10·10−2 +0.1%
−0.0%

+0.0%
−0.0%

+0.0%
−0.0%

+0.0%
−0.0%

+1.0%
−1.0%

122 4.74·10−3 +0.0%
−0.1%

+0.0%
−0.0%

+0.0%
−0.0%

+0.0%
−0.1%

+5.0%
−5.0%

H → Zγ 126 6.84·10−3 +0.0%
−0.0%

+0.0%
−0.0%

+0.0%
−0.1%

+0.0%
−0.1%

+5.0%
−5.0%

130 9.55·10−3 +0.0%
−0.0%

+0.0%
−0.0%

+0.0%
−0.0%

+0.0%
−0.0%

+5.0%
−5.0%

122 6.25·10−1 +0.0%
−0.0%

+0.0%
−0.0%

+0.0%
−0.0%

+0.0%
−0.0%

+0.5%
−0.5%

H → WW 126 9.73·10−1 +0.0%
−0.0%

+0.0%
−0.0%

+0.0%
−0.0%

+0.0%
−0.0%

+0.5%
−0.5%

130 1.49 +0.0%
−0.0%

+0.0%
−0.0%

+0.0%
−0.0%

+0.0%
−0.0%

+0.5%
−0.5%

122 7.30·10−2 +0.0%
−0.0%

+0.0%
−0.0%

+0.0%
−0.0%

+0.0%
−0.0%

+0.5%
−0.5%

H → ZZ 126 1.22·10−1 +0.0%
−0.0%

+0.0%
−0.0%

+0.0%
−0.0%

+0.0%
−0.0%

+0.5%
−0.5%

130 1.95·10−1 +0.0%
−0.0%

+0.0%
−0.0%

+0.0%
−0.0%

+0.0%
−0.0%

+0.5%
−0.5%

proximation which relies on factorizing the Higgs decays into a decay to vector bosons H →WW/ZZ,
where the vector bosons have definite momenta, and successive vector-boson decays W/Z → 2f . In
contrast, they are included in PROPHECY4F which is based on the full H → 4f matrix elements includ-
ing all interferences between different Feynman diagrams. To anticipate the results of this section, NLO
corrections become important at the level of 5% accuracy, while the (LO) interference effects can distort
distributions by more than 10%.

To be specific, we exemplarily analyze the following differential distributions for a Higgs decay
with four charged leptons in the final state, for which the Higgs-boson rest frame is assumed to be
reconstructed:

– In the Higgs-boson rest frame, we investigate cos θf−f− , where θf−f− is the angle between the two
negatively charged leptons. This angle is unambiguously defined in any of the final states H→ 4e,
H→ 4µ, and H→ 2µ2e so that interference effects can be easily studied.
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Uncertainties in standard model 
parameters limit possible precision in 
searches for new physics.  

Table 1: SM Higgs partial widths and their relative parametric (PU) and theoretical (THU) uncertainties for a
selection of Higgs masses. For PU, all the single contributions are shown. For these four columns, the upper
percentage value (with its sign) refers to the positive variation of the parameter, while the lower one refers to the
negative variation of the parameter.

Channel MH [GeV] Γ [MeV] ∆αs ∆mb ∆mc ∆mt THU
122 2.30 −2.3%

+2.3%
+3.2%
−3.2%

+0.0%
−0.0%

+0.0%
−0.0%

+2.0%
−2.0%

H → bb 126 2.36 −2.3%
+2.3%

+3.3%
−3.2%

+0.0%
−0.0%

+0.0%
−0.0%

+2.0%
−2.0%

130 2.42 −2.4%
+2.3%

+3.2%
−3.2%

+0.0%
−0.0%

+0.0%
−0.0%

+2.0%
−2.0%

122 2.51·10−1 +0.0%
+0.0%

+0.0%
−0.0%

+0.0%
−0.0%

+0.0%
−0.1%

+2.0%
−2.0%

H → τ+τ− 126 2.59·10−1 +0.0%
+0.0%

+0.0%
−0.0%

+0.0%
−0.0%

+0.1%
−0.1%

+2.0%
−2.0%

130 2.67·10−1 +0.0%
+0.0%

+0.0%
−0.0%

+0.0%
−0.0%

+0.1%
−0.1%

+2.0%
−2.0%

122 8.71·10−4 +0.0%
+0.0%

+0.0%
−0.0%

+0.0%
−0.0%

+0.1%
−0.1%

+2.0%
−2.0%

H → µ+µ− 126 8.99·10−4 +0.0%
+0.0%

+0.0%
−0.0%

−0.1%
−0.0%

+0.0%
−0.1%

+2.0%
−2.0%

130 9.27·10−4 +0.1%
+0.0%

+0.0%
−0.0%

+0.0%
−0.0%

+0.1%
−0.0%

+2.0%
−2.0%

122 1.16·10−1 −7.1%
+7.0%

−0.1%
−0.1%

+6.2%
−6.0%

+0.0%
−0.1%

+2.0%
−2.0%

H → cc 126 1.19·10−1 −7.1%
+7.0%

−0.1%
−0.1%

+6.2%
−6.1%

+0.0%
−0.1%

+2.0%
−2.0%

130 1.22·10−1 −7.1%
+7.0%

−0.1%
−0.1%

+6.3%
−6.0%

+0.1%
−0.1%

+2.0%
−2.0%

122 3.25·10−1 +4.2%
−4.1%

−0.1%
−0.1%

+0.0%
−0.0%

−0.2%
+0.2%

+3.0%
−3.0%

H → gg 126 3.57·10−1 +4.2%
−4.1%

−0.1%
−0.1%

+0.0%
−0.0%

−0.2%
+0.2%

+3.0%
−3.0%

130 3.91·10−1 +4.2%
−4.1%

−0.1%
−0.2%

+0.0%
−0.0%

−0.2%
+0.2%

+3.0%
−3.0%

122 8.37·10−3 +0.0%
−0.0%

+0.0%
−0.0%

+0.0%
−0.0%

+0.0%
−0.0%

+1.0%
−1.0%

H → γγ 126 9.59·10−3 +0.0%
−0.0%

+0.0%
−0.0%

+0.0%
−0.0%

+0.0%
−0.0%

+1.0%
−1.0%

130 1.10·10−2 +0.1%
−0.0%

+0.0%
−0.0%

+0.0%
−0.0%

+0.0%
−0.0%

+1.0%
−1.0%

122 4.74·10−3 +0.0%
−0.1%

+0.0%
−0.0%

+0.0%
−0.0%

+0.0%
−0.1%

+5.0%
−5.0%

H → Zγ 126 6.84·10−3 +0.0%
−0.0%

+0.0%
−0.0%

+0.0%
−0.1%

+0.0%
−0.1%

+5.0%
−5.0%

130 9.55·10−3 +0.0%
−0.0%

+0.0%
−0.0%

+0.0%
−0.0%

+0.0%
−0.0%

+5.0%
−5.0%

122 6.25·10−1 +0.0%
−0.0%

+0.0%
−0.0%

+0.0%
−0.0%

+0.0%
−0.0%

+0.5%
−0.5%

H → WW 126 9.73·10−1 +0.0%
−0.0%

+0.0%
−0.0%

+0.0%
−0.0%

+0.0%
−0.0%

+0.5%
−0.5%

130 1.49 +0.0%
−0.0%

+0.0%
−0.0%

+0.0%
−0.0%

+0.0%
−0.0%

+0.5%
−0.5%

122 7.30·10−2 +0.0%
−0.0%

+0.0%
−0.0%

+0.0%
−0.0%

+0.0%
−0.0%

+0.5%
−0.5%

H → ZZ 126 1.22·10−1 +0.0%
−0.0%

+0.0%
−0.0%

+0.0%
−0.0%

+0.0%
−0.0%

+0.5%
−0.5%

130 1.95·10−1 +0.0%
−0.0%

+0.0%
−0.0%

+0.0%
−0.0%

+0.0%
−0.0%

+0.5%
−0.5%

proximation which relies on factorizing the Higgs decays into a decay to vector bosons H →WW/ZZ,
where the vector bosons have definite momenta, and successive vector-boson decays W/Z → 2f . In
contrast, they are included in PROPHECY4F which is based on the full H → 4f matrix elements includ-
ing all interferences between different Feynman diagrams. To anticipate the results of this section, NLO
corrections become important at the level of 5% accuracy, while the (LO) interference effects can distort
distributions by more than 10%.

To be specific, we exemplarily analyze the following differential distributions for a Higgs decay
with four charged leptons in the final state, for which the Higgs-boson rest frame is assumed to be
reconstructed:

– In the Higgs-boson rest frame, we investigate cos θf−f− , where θf−f− is the angle between the two
negatively charged leptons. This angle is unambiguously defined in any of the final states H→ 4e,
H→ 4µ, and H→ 2µ2e so that interference effects can be easily studied.
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Lattice QCD can provide the most 
precise determinations of the 
parameters αs, mc, and mb.

Partial widths into bb, cc, and gg are 
more dependent on parametric 
uncertainties than on other theory.  
Since the total width is dominated by 
the bb channel, almost all branching 
fractions are strongly dependent on 
mb, as well.

__
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Lattice in the 21st century
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2+1 Sea Quarks!
HPQCD, MILC, Fermilab Lattice, hep-lat/0304004
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π
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21

Friday, February 11, 2011

For the past ~ten years, it has 
been possible to use lattice QCD 
Monte Carlo methods to calculate 
simple quantities with understood 
error budgets that are complete, 
including the effects of quark-
antiquark pairs.

Lattice/experiment without (L) and 
with (R) quark-antiquark pairs.

Phys.Rev.Lett. 92 (2004) 022001
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What is “simple”?

• Simplest:  stable mesons.

• Over the last ten years, many key quantities.  Hadronically stable 
mesons, especially:

• Heavy and light meson decay constants,

• Semileptonic decays,

• Meson-antimeson mixing.

• Make possible important determinations of 8 CKM matrix elements, 
5 quark masses, the strong coupling constant.

• Now:  ππ systems, nucleons

4



Snowmass 2013, Minneapolis, July 29-Aug. 6, 2013 /27Paul Mackenzie,  USQCD.

Coming US experimental program

• Next five years:  lattice calculations are needed throughout the 
entire future US experimental program.

• g-2

• mu2e, LBNE, Nova:  nucleon matrix elements.

• Underground LBNE:  proton decay matrix elements.

• LHCb, Belle-2:  continued improvement of CKM results

• LHC, Higgs decays:  lattice provides the most accurate αs and mc 
now, and mb in the future

5
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How?

6

⌦
 �5 (t = 0) |  �5 (t)

↵
= C exp(�Mt) + excited states.

1

If the two quarks were a u and a u, the slope would give Mπ, C would be proportional to Fπ2.
_

Excited states

Ground state
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To obtain αs, mc, or mb via the lattice
• In principle,

• can get mMS from mlatt by equating Green’s functions calculated in 
perturbation theory in the two regulators:

• In practice,

• Calculating short-distance quantities to third order perturbation 
theory is hard and messy.

• Calculating some short-distance quantities nonperturbatively is 
easy and clean.

• The art of determining αs or mq via the lattice is finding a quantity 
as easy to calculate as possible

• with continuum perturbation theory, and

• nonperturbatively with the lattice.

7
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mc

8

The most precise non-
lattice determinations of 
mc use e+e- annihilation 
data and ITEP sum rules.  
(Karlsruhe group, 
Chertyrkin et al.)

Recent lattice 
determination of HPQCD 
uses the same type of 
perturbation theory, but 
lattice QCD to supply the 
correlation functions 
rather than experiment.

Citation: J. Beringer et al. (Particle Data Group), PR D86, 010001 (2012) and 2013 partial update for the 2014 edition (URL: http://pdg.lbl.gov)

WEIGHTED AVERAGE
1.275±0.004 (Error scaled by 1.0)

HOANG 06 THEO
BUCHMULLER 06 THEO
BOUGHEZAL 06 THEO 1.8
SIGNER 09 THEO 0.4
CHETYRKIN 09 THEO 0.1
MCNEILE 10 LATT 0.1
BLOSSIER 10 LATT 0.0
AUBERT 10A BABR
LASCHKA 11 THEO
BODENSTEIN 11 THEO 0.1
NARISON 12A THEO 0.7
ALEKHIN 12 THEO
NARISON 13 THEO
ALEKHIN 13 THEO 0.6

χ2

       3.9
(Confidence Level = 0.792)

1.1 1.15 1.2 1.25 1.3 1.35 1.4 1.45

c-QUARK MASS (GeV)

mc

/

ms MASS RATIOmc

/

ms MASS RATIOmc

/

ms MASS RATIOmc

/

ms MASS RATIO
VALUE DOCUMENT ID TECN

11.81±0.14 OUR AVERAGE11.81±0.14 OUR AVERAGE11.81±0.14 OUR AVERAGE11.81±0.14 OUR AVERAGE Error includes scale factor of 1.1. See the ideogram below.

11.27±0.30±0.26 26 DURR 12 LATT
12.0 ±0.3 27 BLOSSIER 10 LATT
11.85±0.16 28 DAVIES 10 LATT

26DURR 12 determine mc/ms using a lattice computation with Nf = 2 dynamical
fermions. The result is combined with other determinations of mc to obtain ms (2
GeV) = 97.0 ± 2.6 ± 2.5 MeV.

27BLOSSIER 10 determine mc/ms from a computation of the hadron spectrum using Nf
= 2 dynamical twisted-mass Wilson fermions.

28DAVIES 10 determine mc/ms from meson masses calculated on gluon fields including
u, d , and s sea quarks with lattice spacing down to 0.045 fm. The Highly Improved
Staggered quark formalism is used for the valence quarks.

HTTP://PDG.LBL.GOV Page 3 Created: 7/12/2013 14:51

PDG, Beringer et al., 2013.
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e+e- → mc

9

J/ψ ψ ,
▲  BES (2001)
❍  MD-1
▼  CLEO
■  BES (2006)pQCD
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Figure 3: R(s) for different energy intervals around the charm threshold region. The
solid line corresponds to the theoretical prediction, the uncertainties obtained from the
variation of the input parameters and of µ are indicated by the dashed curves. The inner
and outer error bars give the statistical and systematical uncertainty, respectively.

bottom case are obvious.
Below 3.73 GeV only u, d and s quarks are produced. To allow for a smooth transition
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Charm and bottom quark masses: An update

K.G. Chetyrkin, J. H. Kühn, A. Maier, P. Maierhöfer, P. Marquard, and M. Steinhauser
Institut für Theoretische Teilchenphysik, Universität Karlsruhe, Karlsruhe Institute of Technology (KIT), 76128 Karlsruhe, Germany

C. Sturm
Physics Department, Brookhaven National Laboratory, Upton, New York 11973, USA

(Received 13 July 2009; published 14 October 2009)

Using new four-loop results for the heavy quark vacuum polarization and new data for bottom quark

production in electron-positron annihilation, an update on the determination of charm- and bottom-quark

masses through sum rules has been performed. The previous result for the charm-quark mass,

mcð3 GeVÞ ¼ 0:986ð13Þ GeV, based on the lowest moment, is supported by the new results from higher

moments which lead to consistent values with comparable errors. The new value for the bottom quark,

mbð10 GeVÞ ¼ 3:610ð16Þ GeV, corresponding to mbðmbÞ ¼ 4:163ð16Þ GeV, makes use of both the new

data and the new perturbative results and is consistent with the earlier determination.

DOI: 10.1103/PhysRevD.80.074010 PACS numbers: 14.65.$q, 11.55.Hx, 12.38.Bx

I. INTRODUCTION

The precise determination of charm- and bottom-quark
masses has always been an important task both for theory
and experiment. The most precise values have been ob-
tained [1] from an analysis of the ITEP sum rules [2] (for
reviews see Refs. [3–5]), combining data for the heavy
quark production cross section in electron-positron colli-
sion with dispersion relations and a four-loop evaluation of
the vacuum polarization induced by the heavy quark cur-
rent. In this paper, we present an update of these results.
We will include data recently published by the BABAR
Collaboration [6] and make use of new perturbative results
which replace the estimates for the four-loop coefficients
of higher moments used in the earlier publications.

II. ANALYTIC RESULTS

Our determination of the heavy quark masses follows
closely Refs. [1,7,8]. It is based on the direct comparison of
the theoretical and experimental evaluations of the contri-
butions to the derivatives of the polarization function
!Qðq2Þ, the former evaluated in perturbative QCD, the
latter through moments of the measured cross section for
heavy quark production in electron-positron annihilation.
Using dispersion relations, the moments of RQ [9]

M n %
Z ds

snþ1 RQðsÞ; (1)

can be related to the derivatives of the vacuum polarization
function at q2 ¼ 0

M n ¼ 12!2

n!

!
d

dq2

"
n
!Qðq2Þjq2¼0: (2)

In its domain of analyticity !Qðq2Þ can be cast into the
form

!Qðq2Þ ¼ Q2
Q

3

16!2

X

n'0

"Cnz
n; (3)

with z ¼ q2=ð4m2
QÞ. HeremQ ¼ mQð"Þ is the heavy quark

mass with chargeQQ in theMS scheme at the scale". The
coefficients "Cn depend on #s and on the heavy quark mass
through logarithms of the form lmQ

¼ lnðm2
Qð"Þ="2Þ.

Equating theoretically calculated and experimentally mea-
sured moments, the heavy quark mass is given by

mQð"Þ ¼ 1

2

!9Q2
Q
"Cn

4Mexp
n

"
1=ð2nÞ

: (4)

As a perturbative series the coefficients "Cn can be written
as

"Cn ¼ "Cð0Þ
n þ #sð"Þ

!
ð "Cð10Þ

n þ "Cð11Þ
n lmQ

Þ

þ
!
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The terms of order #2
s were evaluated up to n ¼ 8 in

Refs. [10–12] (and recently in Refs. [13,14] even up to n ¼
30). The four-loop contributions to "C0 and "C1 were calcu-
lated in Refs. [15,16]. For the higher moments the analysis

of [1] was based on estimates for "Cð30Þ
n with n ¼ 2; 3; 4,

which lead to an additional uncertainty in the mass deter-
mination. Recently the exact results for the second [17] and
third [18] moments were obtained. Combining these coef-
ficients with additional information on the threshold and
the high-energy behavior and using the analyticity of
!Qðq2Þ and Padé approximations, fairly precise numerical
results were obtained [19] for the higher coefficients up to
n ¼ 10. (For an earlier analysis along similar lines see
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I. INTRODUCTION

The precise determination of charm- and bottom-quark
masses has always been an important task both for theory
and experiment. The most precise values have been ob-
tained [1] from an analysis of the ITEP sum rules [2] (for
reviews see Refs. [3–5]), combining data for the heavy
quark production cross section in electron-positron colli-
sion with dispersion relations and a four-loop evaluation of
the vacuum polarization induced by the heavy quark cur-
rent. In this paper, we present an update of these results.
We will include data recently published by the BABAR
Collaboration [6] and make use of new perturbative results
which replace the estimates for the four-loop coefficients
of higher moments used in the earlier publications.

II. ANALYTIC RESULTS
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!Qðq2Þ, the former evaluated in perturbative QCD, the
latter through moments of the measured cross section for
heavy quark production in electron-positron annihilation.
Using dispersion relations, the moments of RQ [9]
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30). The four-loop contributions to "C0 and "C1 were calcu-
lated in Refs. [15,16]. For the higher moments the analysis

of [1] was based on estimates for "Cð30Þ
n with n ¼ 2; 3; 4,

which lead to an additional uncertainty in the mass deter-
mination. Recently the exact results for the second [17] and
third [18] moments were obtained. Combining these coef-
ficients with additional information on the threshold and
the high-energy behavior and using the analyticity of
!Qðq2Þ and Padé approximations, fairly precise numerical
results were obtained [19] for the higher coefficients up to
n ¼ 10. (For an earlier analysis along similar lines see
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can also compute such correlation functions with high accuracy.

of the QCD coupling from Wilson loops to compare with
our new result from the correlators. We summarize our
findings in Sec. VII and compare our results with work by
others. There we also update our recent calculations of the
light-quark masses from the c mass. In the Appendix we
present a powerful simplification for complicated least-
squares fits that can greatly reduce the computing required
for fits. We use this technique in dealing with finite-a
errors in our analysis.

II. HEAVY-QUARK CORRELATOR MOMENTS

Following our earlier paper [1], we focus on correlators
formed from the pseudoscalar density of a heavy quark,
j5 ¼ !c h!5c h:

GðtÞ ¼ a6
X

x

ðam0hÞ2h0jj5ðx; tÞj5ð0; 0Þj0i; (1)

wherem0h is the heavy quark’s bare mass (from the lattice-
QCD Lagrangian), t is Euclidean and periodic with period
T, heavy-quark annihilation into gluons is omitted (be-
cause it is negligible [16]), and the sum over spatial posi-
tions x sets the total three momentum to zero. In our earlier
paper we examined only c quarks; here we will consider a
range of masses between the c and b masses. While we
have written this formula for use with the lattice regulator,
it is important to note that the correlator is UV finite
because we include the factors of am0h. Consequently
lattice and continuum GðtÞ’s are equal when t ! 0 up to
OððamhÞmÞ corrections, which vanish in the continuum
limit [17].

The moments of GðtÞ are particularly simple to analyze:

Gn $
X

t

ðt=aÞnGðtÞ; (2)

where, on our periodic lattice [1],

t=a 2 f0; 1; 2; . . . ; T=2a% 1; 0;%T=2aþ 1; . . . ;%2;%1g:
(3)

Low moments emphasize small t’s and so are perturbative;
and moments with n ' 4 are UV cutoff independent [17].
Therefore

Gn ¼
gnð"MSð#Þ;#=mhÞ

ðamhð#ÞÞn%4 þOððamhÞmÞ (4)

for small n ' 4, where mhð#Þ is the heavy quark’s MS
mass at scale #, and the dimensionless factor gn can be
computed using continuum perturbation theory.

Again following our previous paper, we introduce re-
duced moments to suppress both lattice artifacts and tuning
errors in the heavy quark’s mass [18]:

Rn $
!
G4=G

ð0Þ
4 for n ¼ 4;

am$h

2am0h
ðGn=G

ð0Þ
n Þ1=ðn%4Þ for n ' 6;

(5)

where Gð0Þ
n is the moment in lowest-order, weak-coupling

perturbation theory, using the lattice regulator, and m$h
is

the (nonperturbative) mass of the pseudo-Goldstone h !h
boson. The reduced moments can again be written in terms
of continuum quantities:

Rn $
!
r4ð"MS;#=mhÞ for n ¼ 4;
zð#=mh;m$h

Þrnð"MS;#=mhÞ for n ' 6;
(6)

up to OððamhÞm"sÞ corrections, where

zð#=mh;m$h
Þ $ m$h

2mhð#Þ ; (7)

and rn is obtained from gn [Eq. (4)] and its value, gð0Þn , in
lowest-order continuum perturbation theory:

rn ¼
!
g4=g

ð0Þ
4 for n ¼ 4;

ðgn=gð0Þn Þ1=ðn%4Þ for n ' 6:
(8)

Our strategy for extracting quark masses and the QCD
coupling relies upon lattice simulations to determine non-
perturbative values for the Rn, using simulation results for
am$h

=am0h. We then compare this simulation ‘‘data’’ to
the continuum perturbation theory formulas [Eq. (6)]. That
is, we find values for "MSð#Þ and zð#=mh;m$h

Þ that make
lattice and continuum results agree for small n ' 4. The
function zð#=mh;m$h

Þ can then be combined with experi-
mental results for m$c

and m$b
to obtain masses for the c

and b quarks:

mcð#Þ ¼ mexp
$c

2zð#=mc;m
exp
$c Þ

;

mbð#Þ ¼ mexp
$b

2zð#=mb;m
exp
$b Þ

:

(9)

Parameter # sets the scale for "MS in the perturbative
expansions of the rn. An obvious choice for this parameter
is # ¼ mh since the quark mass, together with n, sets the
momentum scale in our correlators. As noted in our pre-
vious paper, however, perturbation theory is somewhat
more convergent if we use larger #s in the c-quark case.
Consequently here we take #=mh ¼ 3, which is approxi-
mately what we did in our previous paper.
The mass and coupling determinations were done sepa-

rately in our previous paper. Here we extract them simul-
taneously, to guarantee consistency between results. Also
in our previous paper we considered only heavy-quark
masses near the c mass. Here we explore a variety of
masses ranging from just below the c mass to just below
the b mass. This allows us to obtain a value for b-quark’s
mass.
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lattice:  the pseudoscalar correlator.

Perturbation theory to αs3 from the Karlsruhe group.
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Choose pseudoscalar (easiest) current correlator.  
(Easier to calculate than a pion or charmonium 
mass.)

In matching perturbative and nonperturbative results, divide both by the tree 
level correlator.  (Removes leading discretization errors.)

In the lattice calculation of, for example, the charm correlator, use Mηc as 
experimental input to set the energy scale.  (Removes sensitivity to the tuning 
of the lattice mass used.)
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Parameter # sets the scale for "MS in the perturbative
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is # ¼ mh since the quark mass, together with n, sets the
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Note that the ratio mbð!; nfÞ=mcð!; nfÞ is independent
of ! and nf. We obtain the following result for this mass
ratio:

mb=mc ¼ 4:53ð4Þ: (36)

The other important output from our fit is a value for the
parameter

"0 $ "MSð5 GeV; nf ¼ 3Þ ¼ 0:2034ð21Þ: (37)

To compare with other determinations of the coupling, we
add vacuum polarization corrections from the c and b
quarks, using the masses above, and evolve to the
Z-meson mass [20–23]:

"MSðMZ; nf ¼ 5Þ ¼ 0:1183ð7Þ: (38)

Figure 2 shows how consistent our simulation results are
with the theoretical curve for "MSð!; nf ¼ 3Þ correspond-
ing to our value for "0. For this figure we extracted values
for "MS from each Rn separately by dividing out the a2

dependence and zð3; m#h
Þ using our best-fit parameters,

and then solving for "MS by matching with perturbation
theory for rn. (In our fit, of course, we fit all Rn’s simul-
taneously to obtain a single "MS for all of them.)
The dominant sources of error for our results are listed in

Table IV. The largest uncertainties come from extrapola-
tions to a ¼ 0, especially for quantities involving b quarks;
unknown higher-order terms in perturbation theory, espe-
cially for quantities involving c quarks; statistical fluctua-
tions; extrapolations in the heavy quark mass, especially
for quantities involving b quarks; and uncertainties in
static-quark parameters r1=a and r1. The pattern of errors
is as expected in each case. The nonperturbative contribu-
tion from the gluon condensate is negligible except for mc,
again as expected; and errors due to mistuned sea-quark
masses, finite-volume errors, and uncertainties in MS cou-
pling and mass evolution are negligible (< 0:05%).
The a2 extrapolations of our data are not large. This is

illustrated for mh % mc in Fig. 3, which shows the a2

dependence of the reduced moments. The smallest two
lattice spacings are sufficiently close to a ¼ 0 so that the
extrapolation is almost linear from those points. The a ¼ 0
extrapolated values we obtain here for the Rn agree to
within (smaller) errors with those in our previous paper:
here we get 1.282(4), 1.527(4), 1.373(3), 1.304(2) with
n ¼ 4, 6, 8, 10, respectively, for the masses used in the
figure.
We tested the stability of our analysis in several ways:
(i) Vary perturbation theory: We chose ! ¼ 3mh in

order to keep scales large and "MSð!Þ small. Our
results are quite insensitive to !, however. Choosing
! ¼ mh, for example, shifts none of our results by
more than 0:2$, and leaves all errors unchanged
except for mcð3Þ, where the error increases by a
third. Taking ! ¼ 9mh shifts results by less than
0:4$, and reduces the mc error by one-third, leaving
others only slightly reduced. Adding more terms to
the perturbative expansions (Npth ¼ 6 ! 8) also has
essentially no effect on the results. The prior for the

FIG. 2 (color online). QCD coupling "MSð!; nf ¼ 3Þ as a
function of m#h

where ! ¼ 3mh. The solid line, plus gray error

envelope, shows the best-fit coupling from our fit when pertur-
bative evolution is assumed. The data points are values of "MS

extracted from individual simulation results for Rn after extrap-
olating to a ¼ 0 and dividing out zð3; m#h

Þ (n > 4). Results are
given for moments n ¼ 4–10 and all 5 lattice spacings. Several
points from different lattice spacings overlap in these plots.

TABLE IV. Sources of uncertainty for the QCD coupling and
mass determinations in this paper. In each case the uncertainty is
given as a percentage of the final value.

mcð3Þ mbð10Þ mb=mc "MSðMZÞ
a2 extrapolation 0.2% 0.6% 0.5% 0.2%
Perturbation theory 0.5 0.1 0.5 0.4
Statistical errors 0.1 0.3 0.3 0.2
mh extrapolation 0.1 0.1 0.2 0.0
Errors in r1 0.2 0.1 0.1 0.1
Errors in r1=a 0.1 0.3 0.2 0.1
Errors in m#c

, m#b
0.2 0.1 0.2 0.0

"0 prior 0.1 0.1 0.1 0.1
Gluon condensate 0.0 0.0 0.0 0.2

Total 0.6% 0.7% 0.8% 0.6%
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11.27±0.30±0.26 26 DURR 12 LATT
12.0 ±0.3 27 BLOSSIER 10 LATT
11.85±0.16 28 DAVIES 10 LATT

26DURR 12 determine mc/ms using a lattice computation with Nf = 2 dynamical
fermions. The result is combined with other determinations of mc to obtain ms (2
GeV) = 97.0 ± 2.6 ± 2.5 MeV.

27BLOSSIER 10 determine mc/ms from a computation of the hadron spectrum using Nf
= 2 dynamical twisted-mass Wilson fermions.

28DAVIES 10 determine mc/ms from meson masses calculated on gluon fields including
u, d , and s sea quarks with lattice spacing down to 0.045 fm. The Highly Improved
Staggered quark formalism is used for the valence quarks.

HTTP://PDG.LBL.GOV Page 3 Created: 7/12/2013 14:51

PDG, Beringer et al., 2013.

we fit moments with 4 ! n ! 10 from 22 of these parame-
ter sets (the ones with am!h

! 1:95)—88 pieces of simu-
lation data in all. In this section we first describe the fitting
method used to extract the masses and coupling, and then
we review our results.

A. Constrained fits

We analyze all four Rn’s for all 22 parameter sets
simultaneously using a constrained fitting procedure based
upon Bayesian ideas [19]. In this procedure we minimize
an augmented "2 function of the form

"2 ¼
X

in;jm

!Rnið#$2
R Þin;jm!Rmj þ

X

$

%"2
$; (32)

where

!Rni ' Rlatt
ni $ Rnð&i; m!hi; ai; NamÞ; (33)

the Rlatt
n come from Table II with corrections from

Eqs. (26), (28), and (30); fit function Rnð( ( (Þ is defined
by Eq. (15); and #2

R is the error covariance matrix for the
Rlatt
n . The sums i, j are over the 22 sets of lattice spacings

and quark masses; the sums n, m range over the moments
4, 6, 8, and 10.

Function Rnð&i; m!hi; ai; NamÞ depends upon a large
number of parameters, all of which are varied in the fit to
minimize "2. Priors %"2

$ are included for each of these:

(i) parameters zj, with prior Eq. (13), from the 1=m!h

expansion of zð&=mh;m!h
Þ;

(ii) parameters cðnÞij , with prior Eq. (17), from the finite-
lattice spacing corrections;

(iii) unknown perturbative coefficients rnj, with prior
Eq. (21) (evolved to &=mh ¼ 3);

(iv) coupling parameter logð'0Þ, with prior Eq. (22);
(v) (4 in the QCD ( function, with prior Eq. (25);
(vi) lattice spacings ai for each gluon-configuration set,

with priors specified by simulation results for r1=a
(Table I) and the current value for r1 [Eq. (10)];

(vii) values for am!hi, with priors specified by our simu-
lation results (Table II).

The renormalization scales &i are obtained from the
ratio &=mh ¼ 3, simulation results for m!h

, and Eq. (7).
We take Nam ¼ 30 for our final results.

B. Results

We fit our simulation data for the reduced moments Rlatt
n

(Table II) using fit function Rnð( ( (Þ [Eq. (15)] with Nam ¼
30, as discussed in the previous section. The best-fit values
for parameters zj give us the mass-ratio function
zð&=mh ¼ 3; m!h

Þ [Eq. (7)], which we plot in Fig. 1. We
also show our simulation results there for Rlatt

n =rn, together
with the best-fit lines for each lattice spacing. Results are
shown for the three moments that depend upon z, 5 differ-
ent lattice spacings, and quark masses ranging from below
the c mass almost to the b mass. The simulation data were

all fit simultaneously, using the same functions zð3; m!h
Þ

and 'MSð&Þ [with & ¼ 3m!h
=ð2zÞ] for all moments. The

fits are excellent, with "2=88 ¼ 0:19 for the 88 pieces of
simulation data we fit.
Evaluated at m!c

¼ 2:985ð3Þ GeV [27], the mass-ratio
function is zð3; m!c

Þ ¼ 1:507ð7Þ. Combining this with
Eq. (9) and perturbation theory, we can obtain the follow-
ing results for the MS c-quark mass at different scales:

mcð3mc; nf ¼ 3Þ ¼ 0:991ð5Þ GeV;
mcð3 GeV; nf ¼ 4Þ ¼ 0:986ð6Þ GeV;

mcðmc; nf ¼ 4Þ ¼ 1:273ð6Þ GeV:
(34)

Similarly at m!b
¼ 9:395ð5Þ GeV [28], the mass-ratio

function is zð3; m!b
Þ ¼ 1:296ð8Þ, and we obtain the follow-

ing results for the MS b-quark mass at different scales:

mbð3mb; nf ¼ 3Þ ¼ 3:622ð22Þ GeV:
mbð10 GeV; nf ¼ 5Þ ¼ 3:617ð25Þ GeV;

mbðmb; nf ¼ 5Þ ¼ 4:164ð23Þ GeV:
(35)

FIG. 1 (color online). Function zð&=mh ¼ 3; m!h
Þ '

m!h
=ð2mhÞ as a function of m!h

. The solid line, plus gray error

envelope, shows the a ¼ 0 extrapolation obtained from our fit.
This is compared with simulation results for Rn=rn for n ¼ 6, 8,
10 from our 5 different lattice spacings, together with the best fits
(dashed lines) corresponding to those lattice spacings. Dashed
lines for smaller lattice spacings extend farther to the right. The
points marked by an) are for the largest mass we tried (last line
in Table II); these are not included in the fit because am!h

is too

large. Finite-a errors become very small for the larger-n mo-
ments, causing points from different lattice spacings to overlap.
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Uncertainty is dominated by the 
same perturbation theory used in all 
of the most precise results.

PDG
Yellow book
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Why can lattice determinations of mc from correlation 
functions be more precise than those from e+e-?

13

J/ψ ψ ,
▲  BES (2001)
❍  MD-1
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Figure 3: R(s) for different energy intervals around the charm threshold region. The
solid line corresponds to the theoretical prediction, the uncertainties obtained from the
variation of the input parameters and of µ are indicated by the dashed curves. The inner
and outer error bars give the statistical and systematical uncertainty, respectively.

bottom case are obvious.
Below 3.73 GeV only u, d and s quarks are produced. To allow for a smooth transition

6

Because this     is cleaner data than this.

Moments of correlation functions are even 
easier than what I earlier told you have 
been considered the easiest quantities for 
the last ten years.  
We need the correlation functions at finite 
T, and not their asymptotic form at large T. 
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mb
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The most precise non-
lattice determinations of 
mc use e+e- annihilation 
data and ITEP sum rules.  
(Karlsruhe group, 
Chertyrkin et al.)

Recent lattice 
determination uses the 
same type of perturbation 
theory, but lattice QCD to 
supply the correlation 
functions rather than 
experiment.

For mb, perturbative errors 
are tiny.  (α(mb)4<<α(mc)4.)
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For mb, these lattice correlator methods are just barely working at a=0.045 fm.  
(They treat the b as light compared with 1/a.)
Need a=0.03 fm to be comfortable.
Discretization errors and statistics dominate current uncertainties.  Both can be 
attacked with brute force computing power.
Needed configurations are projected to be generated in the next few years.

Note that the ratio mbð!; nfÞ=mcð!; nfÞ is independent
of ! and nf. We obtain the following result for this mass
ratio:

mb=mc ¼ 4:53ð4Þ: (36)

The other important output from our fit is a value for the
parameter

"0 $ "MSð5 GeV; nf ¼ 3Þ ¼ 0:2034ð21Þ: (37)

To compare with other determinations of the coupling, we
add vacuum polarization corrections from the c and b
quarks, using the masses above, and evolve to the
Z-meson mass [20–23]:

"MSðMZ; nf ¼ 5Þ ¼ 0:1183ð7Þ: (38)

Figure 2 shows how consistent our simulation results are
with the theoretical curve for "MSð!; nf ¼ 3Þ correspond-
ing to our value for "0. For this figure we extracted values
for "MS from each Rn separately by dividing out the a2

dependence and zð3; m#h
Þ using our best-fit parameters,

and then solving for "MS by matching with perturbation
theory for rn. (In our fit, of course, we fit all Rn’s simul-
taneously to obtain a single "MS for all of them.)
The dominant sources of error for our results are listed in

Table IV. The largest uncertainties come from extrapola-
tions to a ¼ 0, especially for quantities involving b quarks;
unknown higher-order terms in perturbation theory, espe-
cially for quantities involving c quarks; statistical fluctua-
tions; extrapolations in the heavy quark mass, especially
for quantities involving b quarks; and uncertainties in
static-quark parameters r1=a and r1. The pattern of errors
is as expected in each case. The nonperturbative contribu-
tion from the gluon condensate is negligible except for mc,
again as expected; and errors due to mistuned sea-quark
masses, finite-volume errors, and uncertainties in MS cou-
pling and mass evolution are negligible (< 0:05%).
The a2 extrapolations of our data are not large. This is

illustrated for mh % mc in Fig. 3, which shows the a2

dependence of the reduced moments. The smallest two
lattice spacings are sufficiently close to a ¼ 0 so that the
extrapolation is almost linear from those points. The a ¼ 0
extrapolated values we obtain here for the Rn agree to
within (smaller) errors with those in our previous paper:
here we get 1.282(4), 1.527(4), 1.373(3), 1.304(2) with
n ¼ 4, 6, 8, 10, respectively, for the masses used in the
figure.
We tested the stability of our analysis in several ways:
(i) Vary perturbation theory: We chose ! ¼ 3mh in

order to keep scales large and "MSð!Þ small. Our
results are quite insensitive to !, however. Choosing
! ¼ mh, for example, shifts none of our results by
more than 0:2$, and leaves all errors unchanged
except for mcð3Þ, where the error increases by a
third. Taking ! ¼ 9mh shifts results by less than
0:4$, and reduces the mc error by one-third, leaving
others only slightly reduced. Adding more terms to
the perturbative expansions (Npth ¼ 6 ! 8) also has
essentially no effect on the results. The prior for the

FIG. 2 (color online). QCD coupling "MSð!; nf ¼ 3Þ as a
function of m#h

where ! ¼ 3mh. The solid line, plus gray error

envelope, shows the best-fit coupling from our fit when pertur-
bative evolution is assumed. The data points are values of "MS

extracted from individual simulation results for Rn after extrap-
olating to a ¼ 0 and dividing out zð3; m#h

Þ (n > 4). Results are
given for moments n ¼ 4–10 and all 5 lattice spacings. Several
points from different lattice spacings overlap in these plots.

TABLE IV. Sources of uncertainty for the QCD coupling and
mass determinations in this paper. In each case the uncertainty is
given as a percentage of the final value.

mcð3Þ mbð10Þ mb=mc "MSðMZÞ
a2 extrapolation 0.2% 0.6% 0.5% 0.2%
Perturbation theory 0.5 0.1 0.5 0.4
Statistical errors 0.1 0.3 0.3 0.2
mh extrapolation 0.1 0.1 0.2 0.0
Errors in r1 0.2 0.1 0.1 0.1
Errors in r1=a 0.1 0.3 0.2 0.1
Errors in m#c

, m#b
0.2 0.1 0.2 0.0

"0 prior 0.1 0.1 0.1 0.1
Gluon condensate 0.0 0.0 0.0 0.2

Total 0.6% 0.7% 0.8% 0.6%
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Note that the ratio mbð!; nfÞ=mcð!; nfÞ is independent
of ! and nf. We obtain the following result for this mass
ratio:

mb=mc ¼ 4:53ð4Þ: (36)

The other important output from our fit is a value for the
parameter

"0 $ "MSð5 GeV; nf ¼ 3Þ ¼ 0:2034ð21Þ: (37)

To compare with other determinations of the coupling, we
add vacuum polarization corrections from the c and b
quarks, using the masses above, and evolve to the
Z-meson mass [20–23]:

"MSðMZ; nf ¼ 5Þ ¼ 0:1183ð7Þ: (38)

Figure 2 shows how consistent our simulation results are
with the theoretical curve for "MSð!; nf ¼ 3Þ correspond-
ing to our value for "0. For this figure we extracted values
for "MS from each Rn separately by dividing out the a2

dependence and zð3; m#h
Þ using our best-fit parameters,

and then solving for "MS by matching with perturbation
theory for rn. (In our fit, of course, we fit all Rn’s simul-
taneously to obtain a single "MS for all of them.)
The dominant sources of error for our results are listed in

Table IV. The largest uncertainties come from extrapola-
tions to a ¼ 0, especially for quantities involving b quarks;
unknown higher-order terms in perturbation theory, espe-
cially for quantities involving c quarks; statistical fluctua-
tions; extrapolations in the heavy quark mass, especially
for quantities involving b quarks; and uncertainties in
static-quark parameters r1=a and r1. The pattern of errors
is as expected in each case. The nonperturbative contribu-
tion from the gluon condensate is negligible except for mc,
again as expected; and errors due to mistuned sea-quark
masses, finite-volume errors, and uncertainties in MS cou-
pling and mass evolution are negligible (< 0:05%).
The a2 extrapolations of our data are not large. This is

illustrated for mh % mc in Fig. 3, which shows the a2

dependence of the reduced moments. The smallest two
lattice spacings are sufficiently close to a ¼ 0 so that the
extrapolation is almost linear from those points. The a ¼ 0
extrapolated values we obtain here for the Rn agree to
within (smaller) errors with those in our previous paper:
here we get 1.282(4), 1.527(4), 1.373(3), 1.304(2) with
n ¼ 4, 6, 8, 10, respectively, for the masses used in the
figure.
We tested the stability of our analysis in several ways:
(i) Vary perturbation theory: We chose ! ¼ 3mh in

order to keep scales large and "MSð!Þ small. Our
results are quite insensitive to !, however. Choosing
! ¼ mh, for example, shifts none of our results by
more than 0:2$, and leaves all errors unchanged
except for mcð3Þ, where the error increases by a
third. Taking ! ¼ 9mh shifts results by less than
0:4$, and reduces the mc error by one-third, leaving
others only slightly reduced. Adding more terms to
the perturbative expansions (Npth ¼ 6 ! 8) also has
essentially no effect on the results. The prior for the
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where ! ¼ 3mh. The solid line, plus gray error

envelope, shows the best-fit coupling from our fit when pertur-
bative evolution is assumed. The data points are values of "MS

extracted from individual simulation results for Rn after extrap-
olating to a ¼ 0 and dividing out zð3; m#h

Þ (n > 4). Results are
given for moments n ¼ 4–10 and all 5 lattice spacings. Several
points from different lattice spacings overlap in these plots.

TABLE IV. Sources of uncertainty for the QCD coupling and
mass determinations in this paper. In each case the uncertainty is
given as a percentage of the final value.

mcð3Þ mbð10Þ mb=mc "MSðMZÞ
a2 extrapolation 0.2% 0.6% 0.5% 0.2%
Perturbation theory 0.5 0.1 0.5 0.4
Statistical errors 0.1 0.3 0.3 0.2
mh extrapolation 0.1 0.1 0.2 0.0
Errors in r1 0.2 0.1 0.1 0.1
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Errors in m#c
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we fit moments with 4 ! n ! 10 from 22 of these parame-
ter sets (the ones with am!h

! 1:95)—88 pieces of simu-
lation data in all. In this section we first describe the fitting
method used to extract the masses and coupling, and then
we review our results.

A. Constrained fits

We analyze all four Rn’s for all 22 parameter sets
simultaneously using a constrained fitting procedure based
upon Bayesian ideas [19]. In this procedure we minimize
an augmented "2 function of the form

"2 ¼
X

in;jm

!Rnið#$2
R Þin;jm!Rmj þ

X

$

%"2
$; (32)

where

!Rni ' Rlatt
ni $ Rnð&i; m!hi; ai; NamÞ; (33)

the Rlatt
n come from Table II with corrections from

Eqs. (26), (28), and (30); fit function Rnð( ( (Þ is defined
by Eq. (15); and #2

R is the error covariance matrix for the
Rlatt
n . The sums i, j are over the 22 sets of lattice spacings

and quark masses; the sums n, m range over the moments
4, 6, 8, and 10.

Function Rnð&i; m!hi; ai; NamÞ depends upon a large
number of parameters, all of which are varied in the fit to
minimize "2. Priors %"2

$ are included for each of these:

(i) parameters zj, with prior Eq. (13), from the 1=m!h

expansion of zð&=mh;m!h
Þ;

(ii) parameters cðnÞij , with prior Eq. (17), from the finite-
lattice spacing corrections;

(iii) unknown perturbative coefficients rnj, with prior
Eq. (21) (evolved to &=mh ¼ 3);

(iv) coupling parameter logð'0Þ, with prior Eq. (22);
(v) (4 in the QCD ( function, with prior Eq. (25);
(vi) lattice spacings ai for each gluon-configuration set,

with priors specified by simulation results for r1=a
(Table I) and the current value for r1 [Eq. (10)];

(vii) values for am!hi, with priors specified by our simu-
lation results (Table II).

The renormalization scales &i are obtained from the
ratio &=mh ¼ 3, simulation results for m!h

, and Eq. (7).
We take Nam ¼ 30 for our final results.

B. Results

We fit our simulation data for the reduced moments Rlatt
n

(Table II) using fit function Rnð( ( (Þ [Eq. (15)] with Nam ¼
30, as discussed in the previous section. The best-fit values
for parameters zj give us the mass-ratio function
zð&=mh ¼ 3; m!h

Þ [Eq. (7)], which we plot in Fig. 1. We
also show our simulation results there for Rlatt

n =rn, together
with the best-fit lines for each lattice spacing. Results are
shown for the three moments that depend upon z, 5 differ-
ent lattice spacings, and quark masses ranging from below
the c mass almost to the b mass. The simulation data were

all fit simultaneously, using the same functions zð3; m!h
Þ

and 'MSð&Þ [with & ¼ 3m!h
=ð2zÞ] for all moments. The

fits are excellent, with "2=88 ¼ 0:19 for the 88 pieces of
simulation data we fit.
Evaluated at m!c

¼ 2:985ð3Þ GeV [27], the mass-ratio
function is zð3; m!c

Þ ¼ 1:507ð7Þ. Combining this with
Eq. (9) and perturbation theory, we can obtain the follow-
ing results for the MS c-quark mass at different scales:

mcð3mc; nf ¼ 3Þ ¼ 0:991ð5Þ GeV;
mcð3 GeV; nf ¼ 4Þ ¼ 0:986ð6Þ GeV;

mcðmc; nf ¼ 4Þ ¼ 1:273ð6Þ GeV:
(34)

Similarly at m!b
¼ 9:395ð5Þ GeV [28], the mass-ratio

function is zð3; m!b
Þ ¼ 1:296ð8Þ, and we obtain the follow-

ing results for the MS b-quark mass at different scales:

mbð3mb; nf ¼ 3Þ ¼ 3:622ð22Þ GeV:
mbð10 GeV; nf ¼ 5Þ ¼ 3:617ð25Þ GeV;

mbðmb; nf ¼ 5Þ ¼ 4:164ð23Þ GeV:
(35)

FIG. 1 (color online). Function zð&=mh ¼ 3; m!h
Þ '

m!h
=ð2mhÞ as a function of m!h

. The solid line, plus gray error

envelope, shows the a ¼ 0 extrapolation obtained from our fit.
This is compared with simulation results for Rn=rn for n ¼ 6, 8,
10 from our 5 different lattice spacings, together with the best fits
(dashed lines) corresponding to those lattice spacings. Dashed
lines for smaller lattice spacings extend farther to the right. The
points marked by an) are for the largest mass we tried (last line
in Table II); these are not included in the fit because am!h

is too

large. Finite-a errors become very small for the larger-n mo-
ments, causing points from different lattice spacings to overlap.

HIGH-PRECISION c AND b MASSES, AND QCD . . . PHYSICAL REVIEW D 82, 034512 (2010)
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For mb, these lattice correlator methods are just barely working at a=0.045 fm.  
(They treat the b as light compared with 1/a.)
Need a=0.03 fm to be comfortable.
Discretization errors and statistics dominate current uncertainties.  Both can be 
attacked with brute force computing power.
Needed configurations are projected to be generated in the next few years.

The three most precise determinations of mb 
using moments of e+e- data arrive at different 
estimates of the precision.

Coming lattice calculations should be able to 
confirm (or not) the more more precise 
claims.
Unlike mc, where the lattice and e+e- 
determinations share the same perturbation 
theory, perturbative uncertainties are neglible 
and the lattice and e+e- determinations will 
have totally independent uncertainties.
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overall χ2 to the central value is determined. If this initial χ2 is larger than the number
of degrees of freedom, i.e. larger than the number of individual inputs minus one, then
all individual errors are enlarged by a common factor such that χ2/d.o.f. equals unity.
If the initial value of χ2 is smaller than the number of degrees of freedom, an overall,
a-priori unknown correlation coefficient is introduced and determined by requiring that
the total χ2/d.o.f. of the combination equals unity. In both cases, the resulting final
overall uncertainty of the central value of αs is larger than the initial estimate of a
Gaussian error.

This procedure is only meaningful if the individual measurements are known not to
be correlated to large degrees, i.e. if they are not - for instance - based on the same
input data, and if the input values are largely compatible with each other and with the
resulting central value, within their assigned uncertainties. The list of selected individual
measurements discussed above, however, violates both these requirements: there are
several measurements based on (partly or fully) identical data sets, and there are results
which apparently do not agree with others and/or with the resulting central value, within
their assigned individual uncertainty. Examples for the first case are results from the
hadronic width of the τ lepton, from DIS processes and from jets and event shapes in
e+e− final states. An example of the second case is the apparent disagreement between
results from the τ width and those from DIS [264] or from Thrust distributions in e+e−

annihilation [278].

0.11 0.12 0.13
αα    ((ΜΜ    ))s ΖΖ

Lattice
DIS 
e+e- annihilation

τ-decays 

Z pole fits 

Figure 9.3: Summary of values of αs(M2
Z) obtained for various sub-classes

of measurements (see Fig. 9.2 (a) to (d)). The new world average value of
αs(M2

Z) = 0.1184 ± 0.0007 is indicated by the dashed line and the shaded band.

Due to these obstacles, we have chosen to determine pre-averages for each class of
measurements, and then to combine those to the final world average value of αs(MZ),
using the methods of error treatment as just described. The five pre-averages are
summarized in Fig. 9.3; we recall that these are exclusively obtained from extractions
which are based on (at least) full NNLO QCD predictions, and are published in
peer-reviewed journals at the time of completing this Review. From these, we determine
the new world average value of

αs(M
2
Z) = 0.1184 ± 0.0007 , (9.23)
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Figure 9.2: Summary of determinations of αs from hadronic τ -decays (a), from
lattice calculations (b), from DIS structure functions (c) and from event shapes and
jet production in e+e−-annihilation (d). The shaded bands indicate the average
values chosen to be included in the determination of the new world average of αs.

model and constraints on new physics from data at the Z-pole, αs(M2
Z) = 0.1197± 0.0028

will be used instead, as it is based on a more constrained data set where QCD corrections
directly enter through the hadronic decay width of the Z. We note that all these
results from electroweak precision data, however, strongly depend on the strict validity
of Standard Model predictions and the existence of the minimal Higgs mechanism to
implement electroweak symmetry breaking. Any - even small - deviation of nature from
this model could strongly influence this extraction of αs.

Determination of the world average value of αs(M2
Z)

A non-trivial exercise consists in the evaluation of a world-average value for αs(M2
Z).

A certain arbitrariness and subjective component is inevitable because of the choice of
measurements to be included in the average, the treatment of (non-Gaussian) systematic
uncertainties of mostly theoretical nature, as well as the treatment of correlations among
the various inputs, of theoretical as well as experimental origin. In earlier reviews
[243–245] an attempt was made to take account of such correlations, using methods as
proposed, e.g., in Ref. 281, and - likewise - to treat cases of apparent incompatibilities
or possibly underestimated systematic uncertainties in a meaningful and well defined
manner:

The central value is determined as the weighted average of the different input values.
An initial error of the central value is determined treating the uncertainties of all
individual measurements as being uncorrelated and being of Gaussian nature, and the
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There are multiple ways of determining αs, 
both with and without the lattice.

There are several lattice 
determinations equal to or more 
precise than all the non-lattice 
determinations together.

PDG, QCD review, 2012.
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Note that the ratio mbð!; nfÞ=mcð!; nfÞ is independent
of ! and nf. We obtain the following result for this mass
ratio:

mb=mc ¼ 4:53ð4Þ: (36)

The other important output from our fit is a value for the
parameter

"0 $ "MSð5 GeV; nf ¼ 3Þ ¼ 0:2034ð21Þ: (37)

To compare with other determinations of the coupling, we
add vacuum polarization corrections from the c and b
quarks, using the masses above, and evolve to the
Z-meson mass [20–23]:

"MSðMZ; nf ¼ 5Þ ¼ 0:1183ð7Þ: (38)

Figure 2 shows how consistent our simulation results are
with the theoretical curve for "MSð!; nf ¼ 3Þ correspond-
ing to our value for "0. For this figure we extracted values
for "MS from each Rn separately by dividing out the a2

dependence and zð3; m#h
Þ using our best-fit parameters,

and then solving for "MS by matching with perturbation
theory for rn. (In our fit, of course, we fit all Rn’s simul-
taneously to obtain a single "MS for all of them.)
The dominant sources of error for our results are listed in

Table IV. The largest uncertainties come from extrapola-
tions to a ¼ 0, especially for quantities involving b quarks;
unknown higher-order terms in perturbation theory, espe-
cially for quantities involving c quarks; statistical fluctua-
tions; extrapolations in the heavy quark mass, especially
for quantities involving b quarks; and uncertainties in
static-quark parameters r1=a and r1. The pattern of errors
is as expected in each case. The nonperturbative contribu-
tion from the gluon condensate is negligible except for mc,
again as expected; and errors due to mistuned sea-quark
masses, finite-volume errors, and uncertainties in MS cou-
pling and mass evolution are negligible (< 0:05%).
The a2 extrapolations of our data are not large. This is

illustrated for mh % mc in Fig. 3, which shows the a2

dependence of the reduced moments. The smallest two
lattice spacings are sufficiently close to a ¼ 0 so that the
extrapolation is almost linear from those points. The a ¼ 0
extrapolated values we obtain here for the Rn agree to
within (smaller) errors with those in our previous paper:
here we get 1.282(4), 1.527(4), 1.373(3), 1.304(2) with
n ¼ 4, 6, 8, 10, respectively, for the masses used in the
figure.
We tested the stability of our analysis in several ways:
(i) Vary perturbation theory: We chose ! ¼ 3mh in

order to keep scales large and "MSð!Þ small. Our
results are quite insensitive to !, however. Choosing
! ¼ mh, for example, shifts none of our results by
more than 0:2$, and leaves all errors unchanged
except for mcð3Þ, where the error increases by a
third. Taking ! ¼ 9mh shifts results by less than
0:4$, and reduces the mc error by one-third, leaving
others only slightly reduced. Adding more terms to
the perturbative expansions (Npth ¼ 6 ! 8) also has
essentially no effect on the results. The prior for the

FIG. 2 (color online). QCD coupling "MSð!; nf ¼ 3Þ as a
function of m#h

where ! ¼ 3mh. The solid line, plus gray error

envelope, shows the best-fit coupling from our fit when pertur-
bative evolution is assumed. The data points are values of "MS

extracted from individual simulation results for Rn after extrap-
olating to a ¼ 0 and dividing out zð3; m#h

Þ (n > 4). Results are
given for moments n ¼ 4–10 and all 5 lattice spacings. Several
points from different lattice spacings overlap in these plots.

TABLE IV. Sources of uncertainty for the QCD coupling and
mass determinations in this paper. In each case the uncertainty is
given as a percentage of the final value.

mcð3Þ mbð10Þ mb=mc "MSðMZÞ
a2 extrapolation 0.2% 0.6% 0.5% 0.2%
Perturbation theory 0.5 0.1 0.5 0.4
Statistical errors 0.1 0.3 0.3 0.2
mh extrapolation 0.1 0.1 0.2 0.0
Errors in r1 0.2 0.1 0.1 0.1
Errors in r1=a 0.1 0.3 0.2 0.1
Errors in m#c

, m#b
0.2 0.1 0.2 0.0

"0 prior 0.1 0.1 0.1 0.1
Gluon condensate 0.0 0.0 0.0 0.2

Total 0.6% 0.7% 0.8% 0.6%

MCNEILE et al. PHYSICAL REVIEW D 82, 034512 (2010)
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add vacuum polarization corrections from the c and b
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for "MS from each Rn separately by dividing out the a2
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extrapolation is almost linear from those points. The a ¼ 0
extrapolated values we obtain here for the Rn agree to
within (smaller) errors with those in our previous paper:
here we get 1.282(4), 1.527(4), 1.373(3), 1.304(2) with
n ¼ 4, 6, 8, 10, respectively, for the masses used in the
figure.
We tested the stability of our analysis in several ways:
(i) Vary perturbation theory: We chose ! ¼ 3mh in

order to keep scales large and "MSð!Þ small. Our
results are quite insensitive to !, however. Choosing
! ¼ mh, for example, shifts none of our results by
more than 0:2$, and leaves all errors unchanged
except for mcð3Þ, where the error increases by a
third. Taking ! ¼ 9mh shifts results by less than
0:4$, and reduces the mc error by one-third, leaving
others only slightly reduced. Adding more terms to
the perturbative expansions (Npth ¼ 6 ! 8) also has
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FIG. 2 (color online). QCD coupling "MSð!; nf ¼ 3Þ as a
function of m#h

where ! ¼ 3mh. The solid line, plus gray error

envelope, shows the best-fit coupling from our fit when pertur-
bative evolution is assumed. The data points are values of "MS
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Þ (n > 4). Results are
given for moments n ¼ 4–10 and all 5 lattice spacings. Several
points from different lattice spacings overlap in these plots.
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mass determinations in this paper. In each case the uncertainty is
given as a percentage of the final value.
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Figure 9.2: Summary of determinations of αs from hadronic τ -decays (a), from
lattice calculations (b), from DIS structure functions (c) and from event shapes and
jet production in e+e−-annihilation (d). The shaded bands indicate the average
values chosen to be included in the determination of the new world average of αs.

model and constraints on new physics from data at the Z-pole, αs(M2
Z) = 0.1197± 0.0028

will be used instead, as it is based on a more constrained data set where QCD corrections
directly enter through the hadronic decay width of the Z. We note that all these
results from electroweak precision data, however, strongly depend on the strict validity
of Standard Model predictions and the existence of the minimal Higgs mechanism to
implement electroweak symmetry breaking. Any - even small - deviation of nature from
this model could strongly influence this extraction of αs.

Determination of the world average value of αs(M2
Z)

A non-trivial exercise consists in the evaluation of a world-average value for αs(M2
Z).

A certain arbitrariness and subjective component is inevitable because of the choice of
measurements to be included in the average, the treatment of (non-Gaussian) systematic
uncertainties of mostly theoretical nature, as well as the treatment of correlations among
the various inputs, of theoretical as well as experimental origin. In earlier reviews
[243–245] an attempt was made to take account of such correlations, using methods as
proposed, e.g., in Ref. 281, and - likewise - to treat cases of apparent incompatibilities
or possibly underestimated systematic uncertainties in a meaningful and well defined
manner:

The central value is determined as the weighted average of the different input values.
An initial error of the central value is determined treating the uncertainties of all
individual measurements as being uncorrelated and being of Gaussian nature, and the
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Lattice

Results are dominated by perturbation 
theory.  May by hard to improve without 
next term in perturbation theory.
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αs can be determined with lattice calculations of many other quantities,
e.g., the heavy quark potential.

=

Lattice

HPQCD has determined αs directly from Wilson loops.

Result compatible with their correlator result, similar precision:
 αs = 0.1184(6), but
totally different uncertainties, heavy use of lattice perturbation 
theory.

MS
_

Lattice calculates the heavy quark potential from Wilson loops.

to obtain αs MS.
_
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αs, other lattice results

• The Adler function, JLQCD.  Phys.Rev. D82 (2010) 074505.

• αs = 0.1181 ± 0.0003+0.0014-0.0012

• The Schrödinger functional, PACS-CS.  JHEP 0910:053,2009.

• αs = 0.1205(8)(5)(+0/–17)

• The ghost-gluon vertex, European Twisted Mass Collaboration 
(ETM).  Phys.Rev.Lett. 108 (2012) 262002.

• αs = 0.1200(14)

20

There are numerous good ways of determining αs using lattice QCD.
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overall χ2 to the central value is determined. If this initial χ2 is larger than the number
of degrees of freedom, i.e. larger than the number of individual inputs minus one, then
all individual errors are enlarged by a common factor such that χ2/d.o.f. equals unity.
If the initial value of χ2 is smaller than the number of degrees of freedom, an overall,
a-priori unknown correlation coefficient is introduced and determined by requiring that
the total χ2/d.o.f. of the combination equals unity. In both cases, the resulting final
overall uncertainty of the central value of αs is larger than the initial estimate of a
Gaussian error.

This procedure is only meaningful if the individual measurements are known not to
be correlated to large degrees, i.e. if they are not - for instance - based on the same
input data, and if the input values are largely compatible with each other and with the
resulting central value, within their assigned uncertainties. The list of selected individual
measurements discussed above, however, violates both these requirements: there are
several measurements based on (partly or fully) identical data sets, and there are results
which apparently do not agree with others and/or with the resulting central value, within
their assigned individual uncertainty. Examples for the first case are results from the
hadronic width of the τ lepton, from DIS processes and from jets and event shapes in
e+e− final states. An example of the second case is the apparent disagreement between
results from the τ width and those from DIS [264] or from Thrust distributions in e+e−

annihilation [278].
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Figure 9.3: Summary of values of αs(M2
Z) obtained for various sub-classes

of measurements (see Fig. 9.2 (a) to (d)). The new world average value of
αs(M2

Z) = 0.1184 ± 0.0007 is indicated by the dashed line and the shaded band.

Due to these obstacles, we have chosen to determine pre-averages for each class of
measurements, and then to combine those to the final world average value of αs(MZ),
using the methods of error treatment as just described. The five pre-averages are
summarized in Fig. 9.3; we recall that these are exclusively obtained from extractions
which are based on (at least) full NNLO QCD predictions, and are published in
peer-reviewed journals at the time of completing this Review. From these, we determine
the new world average value of

αs(M
2
Z) = 0.1184 ± 0.0007 , (9.23)
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2012, combined the lattice numbers in a weighted average.
It takes a combined error of the most precise of the inputs.
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overall χ2 to the central value is determined. If this initial χ2 is larger than the number
of degrees of freedom, i.e. larger than the number of individual inputs minus one, then
all individual errors are enlarged by a common factor such that χ2/d.o.f. equals unity.
If the initial value of χ2 is smaller than the number of degrees of freedom, an overall,
a-priori unknown correlation coefficient is introduced and determined by requiring that
the total χ2/d.o.f. of the combination equals unity. In both cases, the resulting final
overall uncertainty of the central value of αs is larger than the initial estimate of a
Gaussian error.

This procedure is only meaningful if the individual measurements are known not to
be correlated to large degrees, i.e. if they are not - for instance - based on the same
input data, and if the input values are largely compatible with each other and with the
resulting central value, within their assigned uncertainties. The list of selected individual
measurements discussed above, however, violates both these requirements: there are
several measurements based on (partly or fully) identical data sets, and there are results
which apparently do not agree with others and/or with the resulting central value, within
their assigned individual uncertainty. Examples for the first case are results from the
hadronic width of the τ lepton, from DIS processes and from jets and event shapes in
e+e− final states. An example of the second case is the apparent disagreement between
results from the τ width and those from DIS [264] or from Thrust distributions in e+e−

annihilation [278].

0.11 0.12 0.13
αα    ((ΜΜ    ))s ΖΖ

Lattice
DIS 
e+e- annihilation

τ-decays 

Z pole fits 

Figure 9.3: Summary of values of αs(M2
Z) obtained for various sub-classes

of measurements (see Fig. 9.2 (a) to (d)). The new world average value of
αs(M2

Z) = 0.1184 ± 0.0007 is indicated by the dashed line and the shaded band.

Due to these obstacles, we have chosen to determine pre-averages for each class of
measurements, and then to combine those to the final world average value of αs(MZ),
using the methods of error treatment as just described. The five pre-averages are
summarized in Fig. 9.3; we recall that these are exclusively obtained from extractions
which are based on (at least) full NNLO QCD predictions, and are published in
peer-reviewed journals at the time of completing this Review. From these, we determine
the new world average value of

αs(M
2
Z) = 0.1184 ± 0.0007 , (9.23)

July 9, 2012 19:53

2012, combined the lattice numbers in a weighted average.
It takes a combined error of the most precise of the inputs.

Adler function                               JLQCD
Schrödinger functional                 PACS-CS
Ghost-gluon vertex                      ETM
QQbar correlators                        HPQCD
Wilson loops                                HPQCD

The lattice results (2013) are dominated by the 
two most precise results from HPQCD, but 
there are several other lattice results from 
Europe and Japan, all of which agree with each 
other and each which is more precise than any 
non-lattice result.
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Prospects: mc and mb

• Correlator methods are currently the most precise, both with 

• e+e- and with lattice methods.

• For mc, correlator moments are simple to calculate on the lattice

• Should be checkable by many lattice groups.

• Results should be of comparable precision to determinations from e+e-.

• Uncertainty will be dominated by perturbation theory.

• For mb, most precise lattice determination relies on treating b quark 
as light compared to 1/a.

• Possible with HISQ fermions, may be hard for other lattice methods.

• The lattice result should catch up to the most precise of the e+e- results 
with more CPU power.

• The resulting uncertainties in the e+e- determinations and the lattice 
determinations will be totally independent of each other (unlike the 
case for mc); perturbative uncertainty is negligible.
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Prospects:  αs

• The uncertainties of the Wilson loop and correlator  
determinations of  αs are dominated by perturbation theory and 
will improve somewhat, but probably not dramatically.

• αs can be determined well from lattice calculations of many 
different quantities.  There is likely to be continued improvement 
in the apparent robustness of the lattice results as more 
quantities are calculated with increasing precision.  

• As of now there are results from

• five different quantities, 

• four different groups on three continents,

• four different fermion discretizations.

• Results are completely independent and consistent, and each is 
more precise than the most precise non-lattice determination.
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Treatment of parametric uncertainties in Higgs physics

24

Table 1: Input parameters and their relative uncertainties, as used for the uncertainty estimation of the branching
ratios. The masses of the central values correspond to the 1-loop pole masses, while the last column contains the
correspondingMS mass values.

Parameter Central value Uncertainty MS massesmq(mq)

αs(MZ) 0.119 ±0.002

mc 1.42 GeV ±0.03 GeV 1.28 GeV
mb 4.49 GeV ±0.06 GeV 4.16 GeV
mt 172.5 GeV ±2.5 GeV 165.4 GeV

Given the uncertainties in the parameters, the parametric uncertainties have been determined as
follows. For each parameter p = αs,mc,mb,mt we have calculated the Higgs branching ratios for p,
p +∆p and p −∆p, while all other parameters have been left at their central values. The error on each
branching ratio has then been determined by

∆p
+BR = max{BR(p+∆p),BR(p),BR(p−∆p)}− BR(p),

∆p
−BR = BR(p)−min{BR(p+∆p),BR(p),BR(p−∆p)}. (3)

Note that this definition leads to asymmetric errors. The total parametric errors have been obtained by
adding the parametric errors from the four parameter variations in quadrature. This procedure ensures
that the branching ratios add up to unity for all parameter variations individually.

The uncertainties of the partial and total decay widths have been obtained in an analogous way,

∆p
+Γ = max{Γ(p+∆p),Γ(p),Γ(p −∆p)}− Γ(p),

∆p
−Γ = Γ(p)−min{Γ(p +∆p),Γ(p),Γ(p −∆p)}, (4)

where Γ denotes the partial decay width for each considered decay channel or the total width, respec-
tively. The total parametric errors have been derived by adding the individual parametric errors in quadra-
ture.

2.1.3.2 Theoretical uncertainties
The second type of uncertainty for the Higgs branching ratios results from approximations in the theoret-
ical calculations, the dominant effects being due to missing higher orders. Since the decay widths have
been calculated with HDECAY and PROPHECY4F the missing contributions in these codes are relevant.
For QCD corrections the uncertainties have been estimated by the scale dependence of the widths result-
ing from a variation of the scale up and down by a factor 2 or from the size of known omitted corrections.
For electroweak corrections the missing higher orders have been estimated based on the known struc-
ture and size of the NLO corrections. For cases where HDECAY takes into account the known NLO
corrections only approximatively the accuracy of these approximations has been used. The estimated
relative theoretical uncertainties for the partial widths resulting from missing higher-order corrections
are summarised in Table 2. The corresponding uncertainty for the total width is obtained by adding the
uncertainties for the partial widths linearly.

Specifically, the uncertainties of the partial widths calculated with HDECAY are obtained as
follows: For the decays H → bb, cc, HDECAY includes the complete massless QCD corrections up
to and including NNNNLO, with a corresponding scale dependence of about 0.1% [38–45]. The NLO
electroweak corrections [46–49] are included in the approximation for small Higgs masses [50] which
has an accuracy of about 1−2% forMH < 135 GeV. The same applies to the electroweak corrections to
H → τ+τ−. For Higgs decays into top quarks HDECAY includes the complete NLO QCD corrections

6

arXiv:1201.3084v1 [hep-ph] 15 Jan 2012

Current discussions of Higgs branching fractions and partial widths use very conservative 
estimates  of parametric precisions.

Higgs X-
Section WG PDG lattice

Karlsruhe
(e+e-) 

world 
non-lattice

δ αs 0.002 0.0007 0.0007 0.0012

δ mc (GeV) 0.03 0.025 0.006 0.013

δ mb (GeV) 0.06 0.03 0.023 0.016

Should interpret as 1 σ errors.

Level of conservatism in assumed uncertainties that is appropriate depends on 
circumstances, e.g., on whether you’re discussing with a postdoc where something 
funny might be going on or whether you’re discussing with the New York Times.
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What to expect

• mc:  Uncertainty in leading lattice result will improve somewhat.  
Correlator moments will be calculated by a number of lattice 
groups with competing methods.  Uncertainty will be dominated 
by perturbation theory.

• αs:  Uncertainty in leading lattice result will improve somewhat.  
αs will be determined by a number of lattice groups using 
competing methods.  Each will be more precise than all the non-
lattice determinations put together.

• mb:  The precision of the best lattice result will improve by a 
factor of two or more, matching the most precise claimed 
uncertainties from e+e-.  Uncertainties from lattice and e+e- will 
have nothing to do with each other.
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What to expect
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P PDG
2013

Lattice
2013

δ P
2018

Corroboration
2018

mc
1.275(25) 

GeV
1.273(6) 

GeV
<0.006 
GeV

Many lattice calculations of the charm moments will exist with 
completely independent uncertainties.

αs 0.1184(7) 0.1184(6) <0.0006

Many lattice calculations of the charm moments will exist with 
completely independent uncertainties.

Many different lattice determinations using different quantities 
will exist with precisions approaching this value and 

completely independent uncertainties. 

mb
4.18(3) 

GeV
4.164(23)

GeV
<0.011 
GeV

Lattice result and the most precise e+e- results will agree (?) 
within stated precisions, with completely independent 

uncertainties.
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Conclusion

• Lattice calculations now provide the most precise determinations 
of αs and mc.  They soon will also provide the most precise 
determination of mb.

• People who wish to really be serious about understanding the 
partial widths of the Higgs will have to try to understand them

27
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Backup slides
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Perturbative coefficients for moments

29

than 10–20. Also we have difficulty getting good fits if we
include data with am!h

> 1:95 from Table II. The am!h
=2

expansion may not converge for these last cases and there-
fore we exclude such data from our final analysis.

The fit function has many more fit parameters cðnÞij than

we have simulation data points when Nam is so large. This
does not cause problems in (Bayesian) constrained fits
since the parameters’ priors [Eq. (17)] are included in the
fit as extra data [19]. Each parameter has a prior and
therefore we always have more data than parameters.

It is, however, very time consuming to fit a function with
so many fit parameters. Although it is not essential for our
analysis, there is a trick that greatly accelerates this kind of
fit. The idea is to fit a modified moment !Rlatt

n in place of
Rlatt
n , where

!R latt
n # Rlatt

n þ Rlatt
n

XNam

i¼ !Namþ1

XNz

j¼0

cðnÞij

!
am!h

2

"
2i
!
2"

m!h

"
j
(18)

and !Nam & Nam. The modified moment is fit with the
much simpler formula (simpler since !Nam & Nam)

!R latt
n ¼ Rnð"; m!h

; a; !NamÞ; (19)

where Rnð' ' 'Þ is again given by Eq. (15). To evaluate !Rlatt
n

from Eq. (18), we treat the coefficients cðnÞij with i > !Nam as

new data with means and standard deviations specified by

the prior, Eq. (17). Uncertainties coming from the cðnÞij ’s are

combined in quadrature with the statistical error in Rlatt
n to

obtain a new error estimate for !Rlatt
n (but leaving the central

value unchanged). In effect we are increasing the error in
the reduced moment to account for high-order ðam!h

=2Þ2i
terms omitted from the fit formula Eq. (19). By choosing
!Nam & Nam, most of the am!h

=2 terms are incorporated
into !Rlatt

n [Eq. (18)], where they are inexpensive, and rela-
tively few end up in the fit function !Rnð' ' 'Þ [Eq. (15)],
where they add parameters to the fit and increase its cost.
Note that the new errors introduce correlations between
!Rlatt
n ’s computed with different lattice spacings or quark

masses, since the same cðnÞij ’s are used for all a’s andm!h
’s.

These correlations are important and need to be preserved
in the fit.

Our procedure, whereby terms are moved out of the
fitting function and incorporated into new (correlated)
errors in the Monte Carlo fit data, is generally useful.
Somewhat remarkably, final fit results are completely (or
almost completely) independent of the number of terms
that are transferred when fits are linear (or almost linear) in
the associated parameters. (The general theorem from
which this result follows is proven in the Appendix.)
Consequently, in our analysis here, we can take Nam very
large—say, Nam ¼ 80—and still have very fast fits by
keeping !Nam very small. With Nam ¼ 80 we find, for
example, that setting !Nam ¼ 0 in !Rnð' ' 'Þ (no terms) gives
essentially identical results for our quark masses and cou-

pling as setting !Nam ¼ 30 (140 terms), even though the
latter fit requires 22 times more computing. We used this
procedure, with !Nam ¼ 0, for most of our testing and
development in this project.

3. Truncated perturbation theory

The perturbative part,

rnð#MS;"=mhÞ ¼ 1þ
XNpth

j¼1

rnjð"=mhÞ#j

MS
ð"Þ; (20)

of the reduced moments is known at best through third
order. We present coefficients rnj through j ¼ 3 in
Table III [2–6]; the values for n ¼ 4–10 are exact, while
rn3 is estimated for the others. In our fits we include higher-
order terms by treating the coefficients of these terms as fit
parameters with prior

rnjð1Þ ¼ 0( 0:5 (21)

for any coefficient that has not been computed in pertur-
bation theory. We set Npth ¼ 6 since then contributions
from still higher orders should be less than 0.1% (and
setting Npth ¼ 8 does not change our results).
The perturbative coefficients for "=mh ¼ 1 (Table III)

are small and relatively uncorrelated from order to order.
This is less true for "=mh ¼ 3, which is where we wish to
work (see Sec. II), because of logð"=mhÞm terms. In order
to capture these effects, we use renormalization-group
equations to express the rnjð3Þ coefficients (for all j )
Npth) in terms of the rnjð1Þ coefficients and logð"=mhÞ,
and substitute the results from Table III for j ) 3 and from
the prior [Eq. (21)] for j > 3. This procedure generates
(correlated) priors for the unknown coefficients at"=mh ¼
3 that properly account for renormalization-group
logarithms.

TABLE III. Perturbation theory coefficients (nf ¼ 3) for rn
[2–6]. Coefficients are defined by rn ¼ 1þP

j¼1rnj#
j

MS
ð"Þ for

" ¼ mhð"Þ. The third-order coefficients are exact for 4 ) n )
10. The other coefficients are based upon estimates; we assign
conservative errors to these.

n rn1 rn2 rn3

4 0.7427 *0:0577 0.0591
6 0.6160 0.4767 *0:0527
8 0.3164 0.3446 0.0634
10 0.1861 0.2696 0.1238
12 0.1081 0.2130 0.1(3)
14 0.0544 0.1674 0.1(3)
16 0.0146 0.1293 0.1(3)
18 *0:0165 0.0965 0.1(3)
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HPQCD take uncalculated 
coefficients in series for moments
rnj ~ O(0.5 αs(mq)j); 
further constrain the possible 
sizes for coefficients by comparing 
nonperturbative results for many 
quark masses with perturbation 
theory using Baysian priors for 
higher order terms.


